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Abstract

Experience replay, the reuse of past data to improve sample efficiency, is ubiq-

uitous in reinforcement learning. Though a variety of smart sampling schemes

have been introduced to improve performance, uniform sampling by far re-

mains the most common approach. One exception is Prioritized Experience

Replay (PER), where sampling is done proportionally to TD errors, inspired

by the success of prioritized sweeping in dynamic programming. The origi-

nal work on PER showed improvements in Atari, but follow-up results were

mixed. In this thesis, we investigate several variations on PER, to attempt to

understand where and when PER may be useful. Our findings in prediction

tasks reveal that while PER can improve value propagation in tabular set-

tings, behavior is significantly different when combined with neural networks.

Certain mitigations—like delaying target network updates to control general-

ization and using estimates of expected TD errors in PER to avoid chasing

stochasticity—can avoid large spikes in error with PER and neural networks

but generally do not outperform uniform replay. In control tasks, none of

the prioritized variants consistently outperform uniform replay with neural

networks; however, recomputing priorities and sampling without replacement

improves the performance of PER over uniform replay in tabular settings. This

thesis sheds light on the interaction between prioritization, bootstrapping, and

neural networks and proposes several improvements for PER in tabular set-

tings and noisy domains.
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Preface

Most of the content in this thesis is based on a paper published at the Rein-

forcement Learning Conference (Mohammad Panahi et al., 2024) co-authored

with Andrew Patterson, Martha White and Adam White.
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If nothing we do matters, then all that matters is what we do.

Because, if there is no bigger meaning, then the smallest act of kindness is

the greatest thing in the world.

– Epiphany, Angel, 2001.

v



Acknowledgements

First, I would like to thank my advisor, Adam White, for being kind and

patient. His careful guidance has shaped my understanding of research and

academia. He showed me how to ask the right questions and run good exper-

iments.

I am also indebted to Martha White and Andrew Patterson for their gener-

ous guidance and feedback. From Martha, I learned to be fearless in research.

I enjoyed research meetings and brainstorming with her. She is also a LaTeX

goddess. From Andy, I learned to be authentic and optimistic. He is both a

great scientist and engineer.

I am grateful for all the support I received during my studies. The Uni-

versity of Alberta provided a safe and calm campus where I worked many late

nights. Digital Research Alliance of Canada provided the computing resources

to complete this project. The Alberta Machine Intelligence Institute supported

me and my friends in many ways. Finally, I thank my committee members,

Adam White, Martha White, and Nathan Sturtevant, for taking the time to

read this document, conduct the oral exam, and give valuable feedback.

My days at the University of Alberta have been fun, engaging, and mem-

orable because of my dear friends and mentors. I am honored and lucky to

have met you all. You made me feel safe, trusted and welcomed. Thank you

Negin, Golnaz, Kevin, Diego, Anna, Hasti, Kimia, Negar, Scott, Mohammad

Reza, Bahar, Zahra, Alireza, Prabhat, Aidan, Farzane, Erin, Marlos, Rich,

and many more. I hope to have been as good a friend as you have been to me.

I am ultimately grateful for my wonderful family who always love and

support me. My appreciation and love for you is boundless and eternal.

vi



Contents

1 Introduction 1

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background, Problem Formulation and Notation 6

2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . 6

2.2 Action-value Methods . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Prediction Problem Setup . . . . . . . . . . . . . . . . . . . . 9

2.4 Deep Q Networks . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Experience Replay . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Target Network . . . . . . . . . . . . . . . . . . . . . . 11

2.4.3 The DQN Algorithm . . . . . . . . . . . . . . . . . . . 11

2.5 Prioritized Experience Replay . . . . . . . . . . . . . . . . . . 13

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Expected Prioritized Experience Replay 17

3.1 Prioritizing with expected TD error . . . . . . . . . . . . . . . 17

3.2 The expected PER algorithm . . . . . . . . . . . . . . . . . . 19

3.3 EPER can succeed in the presence of noise . . . . . . . . . . . 21

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Investigating Prioritization in Markov Chains 23

4.1 Comparing Sample Efficiency in Prediction . . . . . . . . . . . 23

vii



4.2 Overestimation due to Prioritization, Generalization, and Boot-

strapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Comparing Sample Efficiency in Control . . . . . . . . . . . . 28

4.4 Additional Results in Prediction . . . . . . . . . . . . . . . . . 30

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Exploring Simple Modifications to Prioritized Replay 33

5.1 Sampling Without Replacement . . . . . . . . . . . . . . . . . 33

5.2 Updating Transition Priorities . . . . . . . . . . . . . . . . . . 36

5.3 Without-Replacement Experiment Details and Additional Results 38

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Investigating Prioritized Replay in Classic Control 43

6.1 Classic Control Domains . . . . . . . . . . . . . . . . . . . . . 43

6.2 Comparing Sample Efficiency in Classic Control Domains . . . 45

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusion 48

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

References 51

viii



List of Tables

2.1 Hyperparameters specific to DM-PER. Arrow indicates linear

schedule over training time. . . . . . . . . . . . . . . . . . . . 15

4.1 Hyperparameters of prediction agents in Markov chain. . . . . 24

4.2 Hyperparameters of control agents in Markov chain . . . . . . 29

6.1 Hyperparameters of classic control experiments . . . . . . . . 45

ix



List of Figures

3.1 Prioritization can be problematic in noisy prediction with NNs.

Naive PER does not learn the correct value function but EPER

and DM-PER can get to low value errors during training. Re-

sults averaged over 30 trials; shaded region are 95% bootstrap

Confidence Intervals (CI). . . . . . . . . . . . . . . . . . . . . 21

4.1 The 50-state Markov chain environment. . . . . . . . . . . . . 24

4.2 Prioritized methods can improve sample efficiency in predic-

tion on the 50-state chain in tabular (left) and NN prediction

(right). With NN function approximation Naive PER exhibits

an increase in MSVE during early learning. The heatmaps show

estimated values of the states, 1 to 50, over time. Results are

averaged over 30 seeds; shaded regions are 95% bootstrap CI. 25

4.3 Sensitivity to learning rate in prediction chain task. All PER

variants perform better or equal to uniform replay in tabular

setting. Naive PER’s error spike makes it more sensitive to

step size than other methods with neural networks. Results are

averaged over 30 seeds and shaded region is 95% bootstrap CI. 26

4.4 Probability of sampling a transition starting from each state (1

to 50) from the buffer at each time point, in the 50-state Markov

chain for one run. Naive PER over-samples high priority tran-

sitions at the end of the chain. . . . . . . . . . . . . . . . . . . 27

x



4.5 Target Networks can mitigate Naive PER’s poor performance

in the 50-state Markov chain prediction task with NNs. Red

numbers above curves indicate Target Network update rate. . 28

4.6 Prioritization is not more sample efficient than uniform for con-

trol in the 50-state Markov chain environment. Results aver-

aged over 50 seeds; shaded regions are 95% bootstrap CI. . . . 30

4.7 Performance of tabular (top) and neural network (bottom) re-

play agents in the prediction chain task. Tabular prioritized

agents generally outperform uniform replay. In the neural net-

works setting, Naive PER’s error spike is present across all

batch-buffer sizes tested. Results are averaged over 30 seeds;

shaded region is 95% bootstrap CI. . . . . . . . . . . . . . . . 31

5.1 Sampling without replacement improves the performance of Naive

PER in the tabular setting but not with neural nets. Results are

averaged over 50 seeds and shaded regions are 95% bootstrap CI. 34

5.2 Sampling with and without replacement in control using Naive

PER with tabular and NN representations. Without replace-

ment sampling only helps in the tabular setting. Results aver-

aged over 50 seeds; shaded regions are 95% bootstrap CI. . . . 35

5.3 Recomputing priorities in chain prediction using Naive PER,

EPER, and DM-PER with tabular (top) and NN (bottom) rep-

resentations. Generally, recomputing does not help. Results

averaged over 30 seeds; shaded regions are 95% bootstrap CI. . 37

xi



5.4 Combining recomputing priorities with without replacement sam-

pling does not improve performance over just recomputing pri-

orities or without replacement sampling in tabular chain control

(left). Neither modification improve performance when used

with neural networks (right). Results averaged over 50 seeds;

shaded regions are 95% bootstrap CI. . . . . . . . . . . . . . . 37

5.5 Sampling without replacement improves performance in the tab-

ular prediction chain problem for Naive PER and DM-PER.

Results averaged over 50 seeds with 95% bootstrap CI. . . . . 38

5.6 Sampling without replacement does not improve performance

in the prediction chain problem under neural network function

approximation. Results averaged over 50 seeds with 95% boot-

strap CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7 Uniform replay outperforms PER with tabular Q-learning in

the chain problem. Sampling without replacement improves the

performance of naive PER and DM-PER over uniform replay,

but there is only marginal improvement with EPER. Increasing

the batch size speeds up learning, but it improves uniform replay

more than it does PER. Results are averaged over 50 seeds; the

shaded region is 95% bootstrap CI. . . . . . . . . . . . . . . . 40

5.8 Sampling without replacement does not improve the perfor-

mance of DQN agents with prioritized replay in the chain prob-

lem. In most cases, no PER variant outperforms uniform replay.

While increasing batch size improves the sample efficiency of

uniform replay, there is no gain with PER. Results are aver-

aged over 50 seeds; the shaded region is 95% bootstrap CI. . . 41

xii



5.9 Sampling without replacement does not improve control perfor-

mance in the chain task when using EQRC. No PER variant

consistently outperforms uniform replay. Results are averaged

over 50 seeds; the shaded region is 95% bootstrap CI. . . . . . 41

6.1 Performance of DQN replay agents on classic control problems.

No clear benefit for prioritization. Results averaged over 100

seeds; shaded regions are 95% bootstrap CI. . . . . . . . . . . 46

6.2 Performance of 100 individual runs in the Cliffworld shows per-

formance dips using uniform replay, Naive PER, and DM-PER.

EPER-based methods appear to have more stable performance. 46

xiii



Chapter 1

Introduction

Important rare events leave a lasting impression no matter how quickly they

pass. Animals can quickly learn from rare rewards. Imagine a rat running in

a maze trying to find the food placed at the finish line. Finding the food is a

crucial event for the rat. When discovered, the rat’s brain replays the sequence

of events leading to the food in reverse order (Foster andWilson, 2006). Replay

is a frequent event in the brain of animals both when awake and during sleep,

and it plays a crucial role in planning and memory consolidation in animals

(Foster and Wilson, 2006; Ólafsdóttir et al., 2018; Singer and Frank, 2009).

In this thesis, we study the replay of past experiences, not in animals, but in

artificial intelligence systems.

We use the Reinforcement Learning (RL) framework to study intelligent

decision-making through trial-and-error interaction. In RL, an agent is en-

gaged in a loop of interaction with its environment. It takes actions in the

world and is rewarded based on its actions. The goal of an RL agent is to learn

a policy, a strategy for selecting actions, that maximizes total reward. To learn

a good policy, one often needs to estimate the value function: a prediction of

the future reward of a state or action.

Deep neural networks (NN) can learn complex non-linear representations,

allowing RL agents to effectively learn value functions and find good policies
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in large-scale domains. However, the promise of deep RL comes with unique

challenges. Instead of a dataset, RL agents only have access to a stream of

experience from the environment. Supervised learning algorithms update with

mini-batches of data to reduce noise and efficiently train neural networks. The

most common approach for RL agents to update with mini-batches is to hold

a memory of recent events and resample experiences.

Experience Replay (ER) is widely used in deep RL and appears critical

for good performance. The core idea of ER is to record transitions (experi-

ences) in a memory, called a buffer, replay them by sub-sampling mini-batches

to update the agent’s value function and policy. Beyond enabling mini-batch

updates, ER allows great flexibility in agent design. ER can be used to learn

from human demonstrations (pre-filling the replay buffer with human data)

allowing off-line pre-training and fine-tuning. ER has been used to learn many

value functions in parallel, as in Hindsight ER (Andrychowicz et al., 2018),

Universal Value Function Approximators (Schaul, Horgan, et al., 2015), and

Auxiliary Task Learning (Jaderberg et al., 2016; Wang et al., 2024). ER can

be seen as a form of model-based RL where the replay buffer acts as a non-

parametric model of the world (Pan et al., 2018; Van Hasselt et al., 2019),

or ER can be used to directly improve model-based RL systems (Lu et al.,

2024). In addition, ER can be used to mitigate forgetting in continual learn-

ing systems (Anand and Precup, 2024). ER has proven crucial for mitigating

the sample efficiency challenges of online RL, as well as mitigating instabil-

ity due to off-policy updates and non-stationary bootstrap targets. The most

popular alternative, asynchronous training, requires multiple copies of the en-

vironment, which is not feasible in all domains and typically makes use of a

buffer anyway (e.g., Horgan et al., 2018).

There are many different ways ER can be implemented. The most widely

used variant, i.i.d or uniform replay, samples experiences from the buffer with
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equal probability. As discussed in the original paper (Lin, 1991), ER can be

combined with lambda-returns and various sampling methods. Experience can

be sampled in reverse order it occurred, starting at terminal states. Transi-

tions can be sampled from a priority queue ordered by TD errors—the idea

being transitions that caused large updates are more important and should

be resampled. Samples can be drawn with or without replacement—avoiding

saturating the mini-batch with high priority transitions. The priorities can

be periodically updated. We could use importance sampling to re-weight the

distribution in the queue, and generally we could dynamically change the dis-

tribution during the course of learning. Despite the multitude of possible

variants (Hong et al., 2023; Igata et al., 2021; Kobayashi, 2024; Kumar and

Nagaraj, 2023; Lee et al., 2019; A. A. Li et al., 2021; M. Li et al., 2022; Sun

et al., 2020) simple i.i.d replay remains the most widely used approach.1

The exception to this is Prioritized Experience Replay (PER) (Schaul,

Quan, et al., 2016), where experience is sampled from the buffer based on TD

errors. Like prioritized sweeping that inspired it (Moore and Atkeson, 1993),

PER in principle should be more efficient than i.i.d sampling. Imagine, a

sparse reward task where non-zero reward is only observed at the end of long

trajectories; sampling based on TD errors should focus value updates near

the terminal state efficiently propagating reward information across the state

space. This approach was shown to improve over i.i.d sampling in Atari when

combined with Double DQN (Schaul, Quan, et al., 2016). The results in follow

up studies, however, were mixed and did not show a clear benefit for using PER

generally (Fedus et al., 2020; Fu et al., 2022; Hessel et al., 2018; Horgan et al.,

2018; A. A. Li et al., 2021; Ma et al., 2023). Compared with i.i.d sampling,

PER introduces several hyper-parameters controlling importance sampling and

how additional experiences are mixed with the prioritized distribution.

1See (Wittkuhn et al., 2021) for a nice review.
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1.1 Thesis Contributions

In this thesis, we explore several different variations of PER in carefully de-

signed experiments in the hopes of better understanding where and when PER

is useful. Canonical PER (Schaul, Quan, et al., 2016) uses several additional

components that make the impacts of prioritization harder to analyze. We

compare the canonical PER algorithm with simplified variants that build on

the core idea of prioritizing with TD error in simple chain tasks where value

propagation and prioritization should be critical for performance. We find

that only in tabular prediction, do all prioritized variants outperform i.i.d re-

play. Combining basic prioritization with sampling without replacement and

updating the priorities in the buffer (things not done in public implementa-

tions), further improves performance in the tabular case. Our results show that

prioritization, bootstrapping, and function approximation cause problematic

over-generalization, possibly motivating the design choices of PER which ulti-

mately causes the method to function more like i.i.d sampling under function

approximation. Our results in chain domains with neural network function

approximation and across several classic control domains, perhaps unsurpris-

ingly, shows no clear benefit for any prioritized method.

We also introduce and investigate a natural extension to PER based on

ideas from Gradient TD methods (Patterson, White, and White, 2022; Sut-

ton, Maei, et al., 2009). These methods stabilize off-policy TD updates by

learning an estimate of the expected TD error. This estimate can be used

to compute priorities and is less noisy than using instantaneous TD errors.

This expected PER algorithm works well in tabular prediction tasks and noisy

counter-examples where PER fails, but is generally worse than i.i.d sampling

under function approximation and ties i.i.d in classic control problems—though

it appears more stable. Although somewhat of a negative result, expected
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PERs performance suggests noise is not the explanation for i.i.d sampling’s

superiority over PER and more research is needed to find generally useful

prioritization mechanisms.

Here is a summary of the proposed contributions in this thesis:

1. A new variant of prioritized replay, expected PER, designed to be robust

to noise in the TD error.

2. Several new insights into the interaction between prioritization, boot-

strapping, and function approximation.

3. The first investigation into updating priorities and sampling without

replacement in PER: when they help and why?

1.2 Thesis Organization

We present this thesis in several chapters. The next chapter develops the

background and notation used throughout this thesis. We present the expected

PER algorithm and its potential benefits in noisy environments in Chapter 3.

Chapter 4 contains a series of experiments regarding prioritized replay and

neural network generalization in a Markov chain domain. Chapter 5 explores

two unexplored design choices in PER: sampling without replacement and

updating priorities in the buffer. In the last content chapter, we scale our

experiments to a suite of classic control problems. Finally, we conclude the

thesis in Chapter 7 and discuss potential future directions.
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Chapter 2

Background, Problem
Formulation and Notation

In this chapter, we present the required material used in the rest of this the-

sis. Section 2.1 introduces the Markov Decision Processes and formalizes the

reinforcement learning problem. In Section 2.2, we introduce Q-learning, an

action-value method for finding the optimal policy in an MDP, and discuss

semi-gradient Q-learning. In Section 2.3, we formalize the prediction problem

and describe the semi-gradient TD algorithm as a solution method. We then

present the DQN algorithm in Section 2.4 and discuss the role of each of its

components and hyperparameters before reviewing prioritized replay and its

major design choices in Section 2.5.

2.1 Markov Decision Processes

In this thesis, we investigate the problem of goal-driven learning from trial and

error interaction formulated as discrete-time, finite Markov Decision Processes

(MDP). MDP is a formalism for the environment in which the decision-making

agent operates. The agent and environment are engaged in a continual loop

of interaction and can affect each other. The agent’s actions change the en-

vironment. In response, the environment’s feedback signal reinforces certain

actions in the agent.
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More formally, an MDP is made up of three finite sets, S,A,R, corre-

sponding to states, action, and rewards, a mapping, p, and a constant discount

factor, γ ∈ [0, 1] — reducing the importance of future rewards. The environ-

ment dynamics are defined by p returning next state and reward given current

state and action. The transition dynamics may be stochastic or deterministic.

Interaction is modulated in discrete time steps. On time step t, the agent

selects an action At ∈ A in part based on the current state, St ∈ S. The MDP

transitions to a new state St+1 and emits a reward signal Rt+1 ∈ R back to the

agent. The agent’s action choices are determined by it’s policy At ∼ π(·|St),

a mapping from state to a distribution over actions.

The goal of reinforcement learning is to adjust π to maximize the expected

future total reward. Total reward or the Return, Gt, is defined as the dis-

counted sum of future rewards.

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + . . . .

Note the discounting terms bound this infinite series for any reward values.

We can now formalize the objective as finding a policy, π∗, that maximizes the

expected return.

π∗ .
= argmaxπEπ[Gt].

The expectation is dependent on future actions determined by π, and future

states and rewards according to the MDP.

2.2 Action-value Methods

The goal of an RL agent is to find a good policy. Action-value methods search

for a policy using the Generalized Policy Iteration framework in dynamic pro-

gramming, where two simultaneous processes interact. One process predicts

the value of state-action pairs under the current policy, while the other process

improves the policy to be greedy with respect to the current values. In tabular
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MDPs, if we can visit every state-action pair enough times, both processes ap-

proach the optimal policy and its values. This section introduces Q-learning,

a well-known action-value method.

The value of a state-action pair is the expected return from state s, taking

action a, and behaving according to π thereafter.

qπ(s, a)
.
= Eπ[Gt|St = s, At = a].

Note that the state-action value function is an expectation dependent on the

policy π and the current state and action. Action-value methods, learn to

estimate qπ for all states and actions. This process is called policy evaluation.

Then, acting greedy with respect to the current policy’s action-values, leads

to a better policy. This process is called policy improvement. Fortunately,

due to Generalized Policy Iteration, we do not need to fully estimate qπ before

improving the policy — interleaving incremental policy evaluation with policy

improvement steps results in sequence of better and better policies.

In particular, Q-learning estimates the state-action value function, qπ, for

each state s ∈ S and each action a ∈ A via temporal difference updates from

sample interactions:

q̂(St, At) = q̂(St, At) + αδt.

Where α ∈ R+ is the learning-rate parameter and δt is called the Temporal

Difference (TD) error, δt
.
= Rt+1 + γmaxa q̂(St+1, ·) − q̂(St, At). Actions are

selected according to an ϵ-greedy policy: selecting At = argmax q̂(St, ·) 1− ϵ

percentage of the time and a random action otherwise.

Q-learning updates the value function toward the optimal policy’s value

function while acting according to an ϵ-greedy policy of the current action

values. This is an instance of off-policy learning, where they agent is learning

about a policy different than its current behavior policy. If the agent is learning

about its current behavior policy, the method is called on-policy instead.
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In many tasks, it is not feasible to learn an action-value for every state.

In these cases, we use a parametric function like a neural network (NN), to

approximate the value function, q̂w(s, a) ≈ qπ(s, a), where w ∈ Rd are the

network parameters and d is the number of network parameters. The weights

are adjusted via semi-gradient Q-learning update rule,

w = w + αδt∇q̂w(s, a).

Similar to Q-learning, α is the learning-rate parameter and δt is the TD error

at time-step t. The gradient is taken with respect to the network’s current

weights.

2.3 Prediction Problem Setup

Until now, we have described the RL problem as learning a policy that max-

imizes the return. This is known as the control problem. An important sub-

problem in finding a good policy is estimating the value function, called policy

evaluation. In these prediction problems, the objective is to learn the state

value function of a given fixed policy π,

v̂(s) ≈ vπ(s)
.
= Eπ[Gt|St = s].

This can be done using the Temporal Difference learning algorithm (Sutton,

1988), the state-value analog of the Q-learning update above, which has a

semi-gradient variant for learning v̂w : S → R,

w = w + αδt∇v̂w(s).

Where δt
.
= Rt + γv̂w(St+1) − v̂w(St). See Sutton and Barto, 2018 for an

extensive overview of RL.
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2.4 Deep Q Networks

Semi-gradient Q-learning when combined with NNs is often unstable. The

DQN algorithm builds on Q-learning by adding several algorithmic compo-

nents to stabilize learning. In particular, DQN combines experience replay,

target networks, and an optimizer with semi-gradient Q-learning (Mnih et al.,

2015). This section introduces experience replay and target networks, dis-

cuss their roles and key hyperparameters, concluding with the complete DQN

algorithm and its pseudo code.

2.4.1 Experience Replay

Experience Replay (ER) enables mini-batch updates to the value function q̂w

from a finite, first-in-first-out buffer of transitions. DQN prefers mini-batch

style updates that reduce the noise in gradient estimates over updating with

the most recent transition as in Q-learning. Stored experience in the buffer is

sampled uniformly or i.i.d meaning each transition is sampled with replacement

from the buffer with equal probability — the value estimate on the current step

is updated based on experiences observed in the recent past, not necessarily

the most recent transitions.

In its original conception (Lin, 1991), ER played a similar role to model

based approaches like Dyna, enabling reuse of past experience to achieve bet-

ter performance with fewer steps of interaction with the environment. The

mini-batch size controls the rate at which past experiences are resampled, this

hyperparameter must be carefully selected for each environment. An interme-

diate mini-batch size often balances computational cost with data reuse.

In DQN, ER serves another role as well, it mitigates catastrophic forget-

ting: a tendency of NNs to make global changes to their weights when faced

with novel data resulting in loss of previously learned information. Sampling
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transitions from a large enough buffer can diversify the updates mitigating the

forgetting issue in NNs. Success of DQN often relies on careful selection of the

buffer size depending on the problem.

At first glance it appears that a larger replay buffer is preferred as it guar-

antees more data diversity. This choice comes at the cost of a larger memory

footprint not viable in large scale problems. Moreover, the policy and environ-

ment may change over time rendering old transitions in the buffer irrelevant

or stale. Tuning the hyperparameters of ER is hard and problem dependent,

using default values often leads to sub-optimal performance or total failure.

2.4.2 Target Network

Semi-gradient Q-learning combined with NNs is unstable as it suffers from

the deadly triad (Sutton and Barto, 2018): the combination of TD updates

and function approximation can diverge when faced with an off-policy learning

problem. Target networks reduces the speed at which the target of the TD

error change in order to stabilize learning.

Target Networks replace maxa q̂w(St+1, ·) in the TD error with an older

copy of the network. This target network is then updated with the most

recent network weights once in a while. The rate at which the target network

is updated is called the target network refresh rate and is an important problem

dependent hyperparameter. A larger refresh rate keeps the targets fixed for a

longer duration slowing down learning but potentially stabilizing the updates.

2.4.3 The DQN Algorithm

Putting together the components in previous sections alongside the semi-

gradient Q-learning update rule, we arrive at the DQN algorithm. At each

step of interaction, a new transition is stored in the replay buffer. Then, a

mini-batch is sampled with replacement form a uniform replay buffer. The
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TD error and gradient of the mini-batch is computed and network weights

are updated using the Adam optimizer (Kingma and Ba, 2015). The target

network weights are updates at regular intervals and actions are selected using

an ϵ-greedy policy of the current action-value estimates. Pseudo code of DQN

used throughout this thesis is presented in Algorithm 1.

Algorithm 1 DQN with Uniform Replay

Input: mini-batch size b, learning-rate α, training time T , target refresh
rate τ .
Initialize: q network parametersw, target network parameterswtarget = w,
buffer B, ∆ = 0.
Observe S0 and choose A0 ∼ πw(S0)
for t = 1 to T do
Observe Rt, St, γt
Store transition (St−1, At−1, Rt, St, γt) in buffer B
for j = 1 to b do
Sample transition (Sj, Aj, Rj, Sj+1, γj+1) from buffer B with probability
1/|B|
Compute TD error δj = Rj + γj maxa q(Sj+1, a,wtarget)− q(Sj, Aj,w)
Accumulate gradient ∆← ∆− δj∇wq(Sj, Aj,w)

end for
Update w← adam(w, ∆

b
, α); Reset ∆ = 0

if t%τ = 0 then
Refresh target network wtarget ← w

end if
Choose action At ∼ πw(St)

end for

The DQN algorithm has many key hyperparameters affecting performance

and stability. In this thesis, we strive to carefully discuss hyperparameter

choices when presenting the experiments.

The combination of semi-gradient TD with NNs and experience replay

follows trivially from DQN algorithm. Note that we formalized the prediction

problem as an on-policy problem: the objective is learning about the behavior

policy. In the on-policy setting, we do not face the deadly triad and therefore

can ignore target networks.
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2.5 Prioritized Experience Replay

In this section we introduce Prioritized Experience Replay (PER) (Schaul,

Quan, et al., 2016) studied throughout the rest of this thesis. In the simplest

case, PER samples each item in a mini-batch according to a prioritized dis-

tribution in contrast to uniform sampling in vanilla ER. A transition stored

in the buffer at index j is sampled according the following probability,
pj∑
i pi

,

where pj is the priority of the jth transition in the buffer and the summation

is over all transitions in the buffer.

The choice of priorities in PER controls the sampling distribution. The

most common strategy is to prioritize samples according to the magnitude

of the TD error, |δ|. TD error based prioritization was first introduced to

speed up learning in the Dyna framework (Moore and Atkeson, 1993; Peng

and Williams, 1993). The intuition behind this approach is that samples with

larger TD errors are more informative as their current predictions are incorrect.

Focusing updates on these samples can improve learning efficiency.

The DQN algorithm can be modified to use prioritized replay. A simplified

variant, which we call Naive PER, stores each incoming transition alongside

the absolute value of its TD error as the priority. At each step, transitions

are sampled in proportion to their priorities to form a mini-batch and used to

update the value function. The TD error computed during the update is then

used to renew the priority of sampled transitions. Pseudo code of DQN with

Naive PER is presented in Algorithm 2.
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Algorithm 2 DQN with Naive PER

Input: mini-batch size b, learning-rate α, training time T , target refresh
rate τ .
Initialize: q network parametersw, target network parameterswtarget = w,
prioritized buffer B, ∆ = 0.
Observe S0 and choose A0 ∼ πw(S0)
for t = 1 to T do
Observe Rt, St, γt
Store transition (St−1, At−1, Rt, St, γt) in buffer B with priority pt−1 =
|δt−1| = |Rt + γtmaxa q(St, a,wtarget)− q(St−1, At−1,w)|
for j = 1 to b do
Sample transition (Sj, Aj, Rj, Sj+1, γj+1) from buffer B with probability
pj∑
i pi

Compute TD error δj = Rj + γj maxa q(Sj+1, a,wtarget)− q(Sj, Aj,w)
Accumulate gradient ∆← ∆− δj∇wq(Sj, Aj,w)

end for
for j = 1 to b do
Update priority pj = |δj|

end for
Update w← adam(w, ∆

b
, α); Reset ∆ = 0

if t%τ = 0 then
Refresh target network wtarget ← w

end if
Choose action At ∼ πw(St)

end for

The canonical PER algorithm (Schaul, Quan, et al., 2016) adds several

modifications to the Naive PER algorithm described above. In this thesis we

refer to this variant as DM-PER to avoid confusion. Here we present the

modifications in DM-PER.

1. The priorities are scaled by an exponent hyperparameter α controlling

the strength of priorities on the sampling distribution,
pαj∑
i piα

, where a

smaller value of α leads to a distribution closer to uniform.

2. The prioritized distribution is then mixed with a uniform distribution

explicitly. The mixture is controlled by another hyperparameter that

interpolates between a fully prioritized and a fully uniform distribution.
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3. The magnitude of updates are adjusted using importance sampling weights

such that high priority transitions will have smaller update sizes. These

weights are dampened by another exponent hyperparameter and re-

scaled to be in range [0, 1].

4. The initial priority of transitions are set to maximum instead of the TD

error to avoid the cost of computing these TD errors. A New transition

will quickly be sampled and its maximal priority will be replaced by the

TD error.

The addition of new hyperparameters in DM-PER makes fair comparison

with Naive PER and uniform replay difficult as any additional compute spent

tuning the new hyperparameters is not spent on the baselines. In order to

remain fair, we do not tune the new hyperparameters and instead choose fixed

values from the original paper. These hyperparameter values are presented in

Table 2.1.

Priority exponent (α) Importance sampling exponent uniform mix-in ratio
0.6 0.4→ 1.0 10−3

Table 2.1: Hyperparameters specific to DM-PER. Arrow indicates linear sched-
ule over training time.

In this thesis we investigate several variants of prioritized replay. The sim-

plified variant (Naive PER) and the canonical approach (DM-PER) introduced

here will be accompanied by expected PER introduced in the next chapter and

two additional variants introduced later in this document.
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2.6 Summary

In this chapter, we formulated the RL control problem using MDPs and dis-

cussed the action-value class of solutions. In particular, we focused on Q-

learning and its deep RL counterpart, DQN. We formulated the prediction

problem and discussed semi-gradient TD as a solution to prediction problems.

Finally, we discussed the roles of ER and target networks in DQN and reviewed

PER as an alternative to i.i.d replay.
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Chapter 3

Expected Prioritized Experience
Replay

In this chapter we present the expected PER algorithm, designed to be robust

to noise in TD error. We describe its implementation and connection to the

gradient TD family of algorithms. Finally we demonstrate the potential benefit

of EPER in a noisy Markov chain domain where Naive PER fails.

3.1 Prioritizing with expected TD error

The TD error is a noisy quantity and may be unreliable for prioritization.

Sensor measurements and predictions are often noisy in the real world. Priori-

tizing by a noisy TD error could lead to slow learning or even biased solutions.

A good prioritization scheme should be able to perform well in noisy settings.

In order to study the effects of noise on the prioritization strategy, we

introduce a new prioritization variant expected PER (EPER). Instead of using

the sample TD error, δt, which can be noisy when the reward or the transition

dynamics are stochastic, EPER uses an estimate of the expected TD error that

averages out random effects from transition dynamics and the reward signal.

In the prediction setting, we compute the expectation conditioned on the

state, averaging out random effect from action selection. E [δt | St = s]. But

in the control setting the expectation is conditioned on both state and action.
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It is possible to consider state based expectation in the control setting as well

but we did not investigate that variant in this thesis.

Learning this expectation can be formulated as a simple least-squares re-

gression problem with samples δt as the target, yielding the following online

update rule: θt+1 ← θt + α(δt − hθ(St))∇θhθ(St), where hθ is a parametric

approximation of δt with parameters θ. Here we use the same learning rate,

α, as we did to update the value function. This secondary estimator forms

the basis of the gradient TD family of methods (Patterson, White, and White,

2022; Sutton, Maei, et al., 2009) making it natural to combine with recent

gradient TD algorithms such as EQRC (Patterson, White, and White, 2022).

In other words, if we use EQRC instead of DQN, we can use EPER to attain

a less noisy signal for computing priorities with no extra work because EQRC

is estimating hθ anyway.

Temporal difference learning combined with off-policy learning and func-

tion approximation is unstable and can even diverge. Deep RL methods use

target networks to stabilize learning. Gradient TD algorithms, on the other

hand, take a principled approach to learning value functions. They use stochas-

tic gradient descent to minimize a proxy for the value error called projected

Bellman error using both the sampled TD error and a secondary estimator for

the expected TD error. The secondary estimator allows gradient TD meth-

ods to be stable and reliable without needing target networks. As mentioned

above, combining EPER with gradient TD methods such as TDRC or EQRC

is a good choice as they both require the secondary estimator.
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3.2 The expected PER algorithm

In this section, we present the pseudo code for the EPER algorithm and discuss

its implementation details. EPER modifies the Naive PER algorithm to use a

learned estimate of the expected TD error instead of the sample TD error to

prioritize transitions in the replay buffer. The expected TD error is learned as

an online regression problem using the same mini-batches sampled to update

the value function. We present the pseudo code of DQN with expected PER

in Algorithm 3. The highlighted lines show the difference between Naive PER

and EPER. Note that in this pseudo code and the experiments, we use the same

learning rate to update both the value function and the secondary expectation

estimator.

Throughout this thesis, we implement the EPER algorithm described above

in two ways. In the tabular setting, i.e., when the value of each state is

estimated independently of other states, the expected TD error is also learned

separately. When using a neural network to approximate the value function,

however, we use a linear function of the second to last layer of the network

to learn the expected TD error. We restrict the gradient flow from this linear

estimator to the previous layers to avoid changing the features, which allows

the network to learn features relevant to the main task.
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Algorithm 3 DQN with expected PER

Input: mini-batch size b, learning-rate α, training time T , target refresh
rate τ .
Initialize: q network parametersw, target network parameterswtarget = w,
prioritized buffer B, ∆ = 0, h expected TD error estimator parameters θ.
Observe S0 and choose A0 ∼ πw(S0)
for t = 1 to T do
Observe Rt, St, γt
Store transition (St−1, At−1, Rt, St, γt) in buffer B with priority pt−1 =
|h(St−1, At−1, θ)|.
for j = 1 to b do
Sample transition (Sj, Aj, Rj, Sj+1, γj+1) from buffer B with probability
pj∑
i pi

Compute TD error δj = Rj + γj maxa q(Sj+1, a,wtarget)− q(Sj, Aj,w)
Accumulate gradient ∆q ← ∆q − δj∇wq(Sj, Aj,w)
Accumulate gradient ∆h ← ∆h − (h(Sj, Aj, θ)− δj)∇θh(Sj, Aj, θ)

end for
for j = 1 to b do
Update priority pj = |h(Sj, Aj, θ)|

end for
Update w← adam(w, ∆q

b
, α); Reset ∆q = 0

Update θ ← adam(θ, ∆h

b
, α); Reset ∆h = 0

if t%τ = 0 then
Refresh target network wtarget ← w

end if
Choose action At ∼ πw(St)

end for
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3.3 EPER can succeed in the presence of noise

Here, we will show that Naive PER can fail in the presence of noise even

in simple domains, whereas EPER manages to successfully prioritize samples

while being a much simpler method than DM-PER. The task is to estimate

the state-value function of a random policy in a 50 state Markov chain with

the only reward on the terminal transition (described in more detail in the

next chapter). To simulate a noisy environment but keep the value function

fixed, the terminal reward is polluted by zero mean non-symmetric noise.

0 80k
Time Steps

0.0

0.05
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Squared
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Error

Uniform
EPER
Naive PER
DM-PER

Figure 3.1: Prioritization can be problematic in noisy prediction with NNs.
Naive PER does not learn the correct value function but EPER and DM-PER
can get to low value errors during training. Results averaged over 30 trials;
shaded region are 95% bootstrap Confidence Intervals (CI).

Figure 3.1 demonstrates the potential benefits of EPER over Naive PER.

The hyperparameters of all methods are systematically tuned, and still we

see Naive PER fails to learn the correct value function and its value error

increases over time. Other replay variants including EPER, DM-PER, and

uniform replay, all manage to get to low value error by the end of experiment.

21



Failure of Naive PER in this experiment may be due to outliers in the TD

error caused by noisy transitions. A large TD error, affected by noise, will in-

crease the priority of its transition but mislead the agent to chase stochasticity

and learn a wrong value function. The DM-PER algorithm is robust in this

case, which is not surprising given its use of importance sampling and mixing

in i.i.d samples. EPER is not as robust but achieves this with a much simpler

approach. This experiment shows that noisy priorities can mislead agents,

and using an estimate of expected TD error, such as EPER, can improve the

robustness of prioritization in noisy environments.

3.4 Summary

This chapter presented a new prioritization scheme where transitions are pri-

oritized according to the magnitude of an estimation of TD error instead of the

sample TD error. We proposed a simple online regression method for estimat-

ing the expected TD error as done in the gradient TD family of algorithms.

Finally, we demonstrated how EPER can succeed in a noisy Markov chain

prediction task where Naive PER fails due to noise.
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Chapter 4

Investigating Prioritization in
Markov Chains

The idea of prioritized replay is based on the tabular notion of value propaga-

tion and the interplay between neural network generalization and prioritized

replay remains an open question. This chapter explores the combined effect

of prioritized replay and neural network generalization in RL agents.

4.1 Comparing Sample Efficiency in Predic-

tion

In this section we ask several questions in a sparse reward task where rapid

value propagation should require careful sampling from the replay buffer. Does

naive prioritization improve performance over uniform replay? Do the addi-

tional tricks in DM-PER reduce the efficiency of value propagation when they

are not really required? Finally, does robustness to noisy TD errors, as in

EPER, matter in practice? We investigate these questions with tabular and

neural network representations.

We consider both policy evaluation and control problems in a 50-state

Markov chain environment visualized in Figure 4.1. This is an episodic envi-

ronment with γ = 0.99 chosen to present a difficult value propagation problem.

In every episode of interaction, the agent starts at the leftmost state and at
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each step takes the left or right action which moves it the corresponding

neighbour state. The only reward in this environment is +1 when reaching

the rightmost state at which point the episode terminates.

Figure 4.1: The 50-state Markov chain environment.

In the policy evaluation experiments, the objective is to estimate the state

value function of the random policy. The data for the replay buffer is generated

by running the random policy, making this an on-policy prediction task. The

performance measure is the Mean Squared Value Error (MSVE) between es-

timated value function and true value function: MSVE(w) =
∑

s d(s)(vπ(s)−

v̂w(s))
2 where d(s) is the state visitation distribution under the uniform pol-

icy. In this experiment we have two settings, one where the value function is

tabular and one where it is approximated by a two layer neural network with

32 hidden units in each layer and rectified linear unit (ReLU). We systemati-

cally tested a broad set of learning rates, buffer size, and batch sizes—over 50

combinations with 30 seeds each. Table 4.1 lists the tested hyperparameter

ranges for agents in prediction setting.

Tabular agents NN agents
Learning rate [8−6, 8−5, 8−4, 8−3, 8−2] [8−6, 8−5/4, 8−5, 8−4/4, 8−4, 8−3/4, 8−3]

Adam optimizer β1 0.9 0.9
Adam optimizer β2 0.999 0.999

Batch size [1, 8, 64] [1, 8, 64]
Buffer size [800, 8000, 80000] [800, 8000, 80000]
Network size - 2× 32 MLP with ReLU
Training time 80000 80000

Table 4.1: Hyperparameters of prediction agents in Markov chain.
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In Figure 4.2 we show a representative result with batch size 8, buffer size

8000, and learning rate 8−4 in the tabular setting and 8−5 in the neural network

setting. The remaining results are in Section 4.4.

Figure 4.2 shows the learning curves of different replay methods for policy

evaluation in the 50-state Markov chain over time. All three prioritized replay

variants perform similarly and they are more sample efficient than uniform

replay. The heatmaps show estimated values across states over time. Com-

paring the heatmap of tabular uniform replay with tabular Naive PER shows

an increase in value propagation through the chain when using prioritization.
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Figure 4.2: Prioritized methods can improve sample efficiency in prediction
on the 50-state chain in tabular (left) and NN prediction (right). With NN
function approximation Naive PER exhibits an increase in MSVE during early
learning. The heatmaps show estimated values of the states, 1 to 50, over time.
Results are averaged over 30 seeds; shaded regions are 95% bootstrap CI.

In the neural network setting, the error of Naive PER increases during early

learning and then drops to the level of other prioritized replay methods. The

gap between other prioritized methods (DM-PER and EPER) and uniform

replay is smaller in the neural network setting compared with the tabular

setting. Additionally, these two prioritized methods do not exhibit an increase

in the MSVE like Naive PER.
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Figure 4.3 shows the sensitivity of replay methods to learning rate for batch

size 8 and buffer size 8000 in the chain prediction problem. Prioritized replay

is more sample efficient than uniform replay in the tabular setting, especially

with smaller step sizes. But when using neural networks, the early increase in

MSVE of Naive PER, pulls its average performance below other algorithms.
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0.0

0.02
Neural Network
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Figure 4.3: Sensitivity to learning rate in prediction chain task. All PER
variants perform better or equal to uniform replay in tabular setting. Naive
PER’s error spike makes it more sensitive to step size than other methods with
neural networks. Results are averaged over 30 seeds and shaded region is 95%
bootstrap CI.

Perhaps Naive PER oversamples a few transitions which causes the network

to spend a lot of its capacity minimizing the error of those transitions at the

cost of a worse prediction in other states. It is possible that EPER can mitigate

the oversampling issue because the initial estimates are randomized which

helps avoid oversampling certain transitions. DM-PER reduces the negative

effect of oversampling by using importance sampling weights to reduce the

magnitude of updates with high priority transitions.

To better understand what is going on we visualize the probability of updat-

ing a state over time in Figure 4.4. This probability is calculated by summing

over the probabilities of sampling a transition starting from a given state at a

given time based on transitions in the replay buffer. We use the same hyper

parameter settings as in Figure 4.2.
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Figure 4.4: Probability of sampling a transition starting from each state (1 to
50) from the buffer at each time point, in the 50-state Markov chain for one
run. Naive PER over-samples high priority transitions at the end of the chain.

The sampling distribution of tabular Naive PER follows the intuition from

prioritized sweeping by putting most of the probability mass on the rewarding

transition at the end of chain, then, increasing the probability of nearby states

in a backward fashion to help value propagation. Under neural network func-

tion approximation the pattern is similar but more uniform. This is caused by

the random initialization of network parameters which generates non-zero TD

errors across the state space. The sampling distribution of both DM-PER and

EPER are, on the other hand, more structured. Both feature non-terminal

transitions with high probability (bright spots) and striping. It is hard to

speculate why this occurs, nevertheless, these patterns provide evidence that

combining prioritization with NNs can result distributions very different from

the tabular case.

4.2 Overestimation due to Prioritization, Gen-

eralization, and Bootstrapping

In the previous section we saw that Naive PER exhibited a spike in early learn-

ing, but why? One possible explanation is that Naive PER is oversampling

the terminal transition which causes the NN to inappropriately over-estimate
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nearby states, causing more oversampling, and so on, spreading across all

states. The heatmap in Figure 4.4 provides some evidence of this. One way

to prevent over-generalization is to employ target networks. We use the same

setup as in figure 4.2 and only consider Naive PER with neural nets.

Figure 4.5: Target Networks can mitigate Naive PER’s poor performance in
the 50-state Markov chain prediction task with NNs. Red numbers above
curves indicate Target Network update rate.

The results in Figure 4.5 show the performance of Naive PER with three

different target network update rates (1, 100, 500). An update rate of 1

is identical to not using target networks at all. As we update the target

network less frequently we see the spike in the learning curves is reduced.

Notice that heatmap for the value function with an update rate of 500 is very

similar to Naive PER in the tabular case (see Figure 4.2). We only see a

minor performance improvement over uniform replay in Figure 4.5, but this

is expected because updating the target network infrequently is reducing the

update rule’s ability to propagate value backwards via bootstrapping.

4.3 Comparing Sample Efficiency in Control

In this section we turn our attention to a simple control task, again designed in

such a way that value propagation via smart sampling should be key. Here our

main question is: do the insights about the benefits of prioritization persist
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when the policy changes and exploration is required.

In the tabular setting, we use Q-learning (without target networks) and in

neural network setting we explore two setups: (1) DQN (with target refresh

rate of 100) and (2) EQRC (as an alternative method without target network).

We report steps to goal as the performance metric for the 50-state Markov

chain problem. Buffer size is fixed to 10000, batch size 64, and we pick the

best learning rate for each method. Each control agent is run for 100000 steps

with an ϵ-greedy policy with ϵ = 0.1. Table 4.2 lists the tested hyperparameter

ranges for agents in control setting. We chose the learning rate for each agent

by maximizing over average performance across the tested learning rates.

Q-Learning agents (tabular) DQN and EQRC agents (NN)
Learning rate [8−7, 8−6, 8−5, 8−4, 8−3, 8−2] [8−5, 8−4, 8−3, 8−2, 8−1]

Adam optimizer β1 0.9 0.9
Adam optimizer β2 0.999 0.999

Batch size 8 8
Buffer size 10000 10000
Network size - 2× 32 MLP with ReLU
Target refresh - 100 (only DQN)
Exploration ϵ 0.1 0.1
Training time 100000 100000

Table 4.2: Hyperparameters of control agents in Markov chain

The results in Figure 4.6 are somewhat unexpected. The dotted line depicts

the performance of the optimal policy. Even in the tabular case, Q-learning

with uniform replay is a better than all the three prioritized methods. DM-

PER performs just as well as uniform replay, but this could be explained by

the fact that DM-PER’s sampling is closer to uniform compared with the

other prioritization schemes as shown previous in Figure 4.4. Naive PER

eventually reaches the near optimal policy and EPER performs poorly. Under

neural network approximation, all tested algorithms have a wide overlapping

confidence regions, even with 50 seeds, making differences between methods
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non conclusive. It seems good performance in prediction does not necessarily

translate into improvement in control, even in the same MDP.

EPER

Naive PER

DM-PER

Uniform

Figure 4.6: Prioritization is not more sample efficient than uniform for control
in the 50-state Markov chain environment. Results averaged over 50 seeds;
shaded regions are 95% bootstrap CI.

4.4 Additional Results in Prediction

This section presents the set of all results in the chain prediction problem.

We show learning curves for all batch and buffer size combinations in Table

4.1. We select the learning rate of each algorithm in each batch-buffer size

setting by maximizing the average performance across 30 seeds. The results

are organized in Figure 4.7.

We mostly see similar behavior across all tested hyperparameters. In the

tabular setting, prioritization improves sample efficiency in smaller batch sizes

but its effect disappears with larger batch sizes. Increasing the buffer size in

the tabular setting resulted in less noisy learning curves and more consistent

behaviour acorss methods. In the large batch and buffer setting, there is no

difference between any of the methods.

With neural networks Naive PER suffers from the large spike in error across

most tested hyeprparameter combinations. Similar to the tabular setting,

increasing the buffer size makes all algorithms perform similar to each other.

On the other hand, increasing the batch size, particularly with small buffer
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size, appears to reduce the spike in value error.
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Figure 4.7: Performance of tabular (top) and neural network (bottom) replay
agents in the prediction chain task. Tabular prioritized agents generally out-
perform uniform replay. In the neural networks setting, Naive PER’s error
spike is present across all batch-buffer sizes tested. Results are averaged over
30 seeds; shaded region is 95% bootstrap CI.
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4.5 Summary

In this chapter, we conducted experiments on a Markov chain environment

to investigate the effect of prioritization on neural network generalization.

We observed prioritized replay outperforming uniform replay in the tabular

setting by improving the speed value propagates across states. Naive PER

showed a spike in error when combined with a neural network. A closer look

at values suggests an aggressive generalization of the neural net that leads

to overestimation. A follow-up experiment revealed that combining priori-

tized sampling with neural nets and bootstrapping can lead to a pathological

value over-estimation problem. Finally, in the control setting, uniform replay

outperformed all prioritized variants in the tabular setting. This unexpected

result suggests the benefit of prioritization in control problems may not be

as straightforward as it is for value function learning. Furthermore, control

results with neural nets showed no clear advantage to prioritization for both

DQN and EQRC algorithms.
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Chapter 5

Exploring Simple Modifications
to Prioritized Replay

In this chapter we explore two simple but natural improvements to replay that

could improve performance. There are many possible refinements, and many

have been explored in the literature already. Here we select two that have

not been deeply explored before, specifically (1) sampling transitions with or

without replacement, and (2) recomputing priorities of samples in the buffer.

5.1 Sampling Without Replacement

When sampling a mini-batch from the replay buffer, one has the option to

sample transitions with or without replacement. This decision is important in

PER because sampling with replacement can cause a high priority transition

to be repeatedly sampled into the same mini-batch. This certainly happens

on the first visit to the goal state in the 50 state chain. Uniform replay

avoids this problem by design. Most reference implementations of PER sample

with replacement. We hypothesize that duplicate transitions in the mini-batch

reduces the sample efficiency of prioritized methods, effectively nagating the

benefit of mini-batches.

We compare Naive PER with and without replacement sampling and uni-

form replay in the 50-state Markov chain prediction domain under tabular
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and neural net function approximation. We used a two layer network with 32

hidden units and ReLU activation, a batch size of 8000 and experimented with

several mini-batch sizes (1, 8, 64, 256). With batch size 1, with and without

replacement are identical. We report a representative result with learning rate

of 8−4 in the tabular setting and 8−5 in the neural network setting and report

MSVE under the target policy over training time.
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Figure 5.1: Sampling without replacement improves the performance of Naive
PER in the tabular setting but not with neural nets. Results are averaged
over 50 seeds and shaded regions are 95% bootstrap CI.

Figure 5.1 shows that sampling without replacement provides a minor im-

provement on the performance of Naive PER in tabular prediction, where

Naive PER was already working well, but does not help when combined with

NN function approximation. In fact, we again see Naive PER’s characteristic

spike due to over-generalization and bootstrapping. This poor performance

is somewhat mitigated by larger batch sizes, but still uniform replay is bet-

ter. Note, as expected, the performance of uniform replay suffers with smaller

batch sizes.

Now we turn to the control setting to evaluate the impact of sampling

without replacement. We tested tabular Q-learning and neural network DQN

settings. The DQN agent has a two layer network with 32 hidden units and
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ReLU activation with target refresh rate 100. All agents have buffer size 10000

and a series of batch sizes similar to the previous experiment. The learning rate

of each agent is selected by sweeping over a range of step sizes and maximizing

over average performance (sweep details in Section 5.3). Figure 5.2 summarizes

the results.
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Figure 5.2: Sampling with and without replacement in control using Naive
PER with tabular and NN representations. Without replacement sampling
only helps in the tabular setting. Results averaged over 50 seeds; shaded
regions are 95% bootstrap CI.

In tabular control we see a significant improvement in Naive PER when

sampling without replacement, whereas with function approximation the re-

sult is less clear. In tabular, the gap in performance between with and without

replacement steadily increases and eventually Naive PER becomes nearly sta-

tistically better than uniform. With DQN (function approximation), larger

batch sizes mostly result in ties, though Naive PER without replacement is

the only method to always reach optimal on average.

Taken together, the results which use sampling without replacement sug-

gest a minor benefit. It always helps in the tabular case, at times outperform-

ing uniform replay, and with function approximation it mostly does not hurt

performance.
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5.2 Updating Transition Priorities

Another factor that can potentially limit the benefit of prioritization is non-

informative and outdated priorities in the buffer. The priority of a transition

is updated only when the transition is sampled. This means that at any

given time the priority of almost all items in the replay buffer are outdated

with respect to the current value function. We can update the priority of all

transitions in the buffer by recomputing their TD error using the current value

function estimate periodically.

We tested this idea in prediction setting in the 50 state chain. We com-

pared the performance of Naive PER, EPER, and DM-PER recomputing the

priorities every 10 and 1000 steps. Again we looked at tabular and NN rep-

resentations with a two layer neural net of size 32 with ReLU activation for

the latter. The buffer size is fixed to 8000, batch size to 8, and learning rate

to 8−4 for tabular and 8−5 for neural net agents. Figure 5.3 summarizes the

results. In short, we see no benefit from recomputing priorities in the function

approximation settings and marginal benefit in the tabular case with Naive

PER. Interestingly, for DM-PER recomputing too often, every 1000 steps vs

every 10 steps, hurts compared to the default—updating only when a transi-

tion is first added or resampled. Note the over-generalization of Naive PER

with neural nets is also not reduced more by up-to-date priorities.

As a final experiment in the chain problem, we investigate if combining

sampling without replacement and recomputing priorities every 10 steps, to-

gether, can improve the performance of Naive PER. We conduct this exper-

iment in the control chain problem and repeat the experiment for tabular

Q-learning and DQN with a two layer neural net with 32 hidden units and

ReLU activation with target refresh rate of 100. The buffer size is fixed to

10000 and batch size is 64, we select the learning rate over a range of values
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Figure 5.3: Recomputing priorities in chain prediction using Naive PER,
EPER, and DM-PER with tabular (top) and NN (bottom) representations.
Generally, recomputing does not help. Results averaged over 30 seeds; shaded
regions are 95% bootstrap CI.

that attained the best average performance. As we see in Figure 5.4, in the

tabular case, Naive PER with both modifications achieves the best perfor-

mance, but barely more than either modification in isolation. Unfortunately,

as expected, there is no clear benefit in the function approximation setting.
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Figure 5.4: Combining recomputing priorities with without replacement sam-
pling does not improve performance over just recomputing priorities or without
replacement sampling in tabular chain control (left). Neither modification im-
prove performance when used with neural networks (right). Results averaged
over 50 seeds; shaded regions are 95% bootstrap CI.
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5.3 Without-Replacement Experiment Details

and Additional Results

Earlier, we showed sampling mini-batches with replacement can reduce the

sample efficiency of Naive PER. Unlike Uniform replay, a high-priority tran-

sition can saturate the mini-batch in PER reducing data diversity. Here, we

revisit experiments presented earlier in this chapter and investigate the ef-

fect of without replacement sampling across three PER variants, Naive PER,

DM-PER, and EPER in prediction and control chain problems.

In the prediction setting, the hyperparameters are selected according to

Table 4.1, testing a variety of batch sizes [1, 8, 64, 256]. We chose a representa-

tive learning rate, namely, 8−4 for tabular agents and 8−5 for neural network

agents. Figure 5.5 shows the MSVE over time for the tabular prediction chain

problem. All three prioritized variants outperform uniform replay with smaller

batch sizes, this gap decreases with larger batch sizes. Sampling without re-

placement appears to improve the performance of Naive PER and DM-PER

but not EPER.
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Figure 5.5: Sampling without replacement improves performance in the tabu-
lar prediction chain problem for Naive PER and DM-PER. Results averaged
over 50 seeds with 95% bootstrap CI.
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Results in prediction with neural network are different and show no clear

performance improvement in without replacement sampling over regular PER

variants (see Figure 5.6). Similar to the tabular setting, uniform replay per-

forms as well as all prioritized variants with large batch sizes but DM-PER

can outperform uniform replay with small batch sizes.
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Figure 5.6: Sampling without replacement does not improve performance in
the prediction chain problem under neural network function approximation.
Results averaged over 50 seeds with 95% bootstrap CI.

In the control setting, We report learning curves for a tabular Q-learning

agent and two neural network alternatives: DQN and EQRC. For all agents,

we test 4 different batch sizes [1, 8, 64, 256] and select the learning rate via

maximizing over a range of values. Table 4.2 summarizes the details of hyper-

parameters used in these experiments.

Figure 5.7 shows the learning curves of PER variants in the tabular con-

trol setting. We see an improvement in sample efficiency of Naive PER and

DM-PER when sampling without replacement, but there is no clear benefit

in EPER. Sampling without replacement allows Naive PER and DM-PER to

outperform uniform replay across batch sizes. Increasing the batch size im-

proves learning speed across all agents, but uniform replay appears to benefit

from increased batch size more than PER variants.
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Figure 5.7: Uniform replay outperforms PER with tabular Q-learning in the
chain problem. Sampling without replacement improves the performance of
naive PER and DM-PER over uniform replay, but there is only marginal im-
provement with EPER. Increasing the batch size speeds up learning, but it
improves uniform replay more than it does PER. Results are averaged over 50
seeds; the shaded region is 95% bootstrap CI.

Figures 5.8 and 5.9 show the learning curves of PER variants in DQN and

EQRC, respectively. In both cases, uniform replay outperforms prioritized

replay with larger batch sizes, while the performance is similar with a smaller

batch size. Unfortunately, there is no consistent difference between sampling

with and without replacement in both neural network settings.

The collection of experiments in this section suggests sampling without

replacement can improve the sample efficiency of tabular agents but does not

have a noticeable effect on neural networks in the chain problem.
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Figure 5.8: Sampling without replacement does not improve the performance
of DQN agents with prioritized replay in the chain problem. In most cases, no
PER variant outperforms uniform replay. While increasing batch size improves
the sample efficiency of uniform replay, there is no gain with PER. Results are
averaged over 50 seeds; the shaded region is 95% bootstrap CI.
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Figure 5.9: Sampling without replacement does not improve control perfor-
mance in the chain task when using EQRC. No PER variant consistently
outperforms uniform replay. Results are averaged over 50 seeds; the shaded
region is 95% bootstrap CI.
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5.4 Summary

In this chapter, we investigated two design choices that have not previously

been explored in PER: sampling mini-batches without replacement and period-

ically updating the priorities in the buffer. Our results suggest that sampling

without replacement can improve sample efficiency in prediction and control

problems in the tabular setting but does not offer a significant improvement

with neural networks. Similarly, keeping priorities up-to-date does not appear

to improve sample efficiency with neural nets but can significantly improve

performance in the tabular control setting. Finally, we explored combining

the two modifications in the control problem and found that the combination

does not further improve over either modification in the tabular setting.
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Chapter 6

Investigating Prioritized Replay
in Classic Control

We designed the chain experiments, explored in previous chapters, as an ide-

alized problem to showcase the benefits of smarter replay; in this chapter, we

consider slightly more complex, less ideal tasks. In the chain, we only saw

clear advantages for prioritization in prediction and control with small batch

sizes. The main question is whether these benefits persist or prioritization will

perform worse, supporting the common preference for uniform replay in deep

RL.

6.1 Classic Control Domains

In this chapter, we consider four episodic environments significantly more com-

plex than the chain but small enough that we can use smaller NNs and ex-

tensive experimentation is possible. The first three environments, known as

classic control, feature low-dimensional continuous states and discrete actions.

MountainCar (Moore, 1990) and Acrobot (Sutton, 1995) are two control tasks

where agents must manipulate a physical system to reach a goal at the end of

a long trajectory.

In MountainCar, the goal is to drive an underpowered car up a hill in a

simulated environment with simplified physics by taking one of three actions:
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accelerate left, accelerate right, do not accelerate. The observations are the

position and speed values of the car. The reward is -1 per step, and episodes

terminate when the car crosses a threshold at the top of the hill with a reward

of 0. In Acrobot, the agent controls a system of two linear links connected by

a movable joint. The goal is to move the links by applying torque to the joint,

such that the bottom part of the link rises to the level of its highest point,

upon which the episode terminates with reward 0. The reward of all other

transitions is -1 per step.

We also include Cartpole due to the unstable dynamics of the balanced

position (Barto et al., 1983). The goal of an agent in the Cartpole environment

is to balance a pole on top of a moving cart by accelerating the cart to either

left or right. The reward is +1 per step if the pole is kept balanced. If it falls

more than 12 degrees, the episode terminates, resetting the pole to its upright

position. The episode cutoff length is 500.

Finally, we include the tabular Cliffworld (Sutton and Barto, 2018) because

the reward for falling off the cliff is a large negative value that causes rare but

large spikes in the TD error, which might showcase the benefit of EPER.

Cliffworld is a grid world where agents start at a fixed state, pick any cardinal

direction, and move to the corresponding neighbor state. The goal is to reach

the final state on the opposite side of the starting state while avoiding a cliff

near the optimal path. The reward is -1 per step except when falling off the

cliff, where the agent is rewarded -100 and reset back to start. We set the

discount factor γ = 0.99. The episode cutoff in MountainCar, Acrobot, and

Cartpole is 500 steps, but there is no cutoff in Cliffworld.
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6.2 Comparing Sample Efficiency in Classic

Control Domains

In this section, we compare the sample efficiency of Naive PER with uniform

replay in classic control domains. We also include DM-PER and a modified

PER that recomputes the transition priorities and samples mini-batches with-

out replacement. We then take a closer look at the performance of individual

agents and find EPER can be more robust than other PER variants in the

Cliffworld domain.

In this experiment, we use DQN with a two-layer network of size 64 with

ReLU activation and a target refresh rate of 128. Batch size and buffer size

are fixed to 64 and 10000 respectively and the learning rate is selected using

a two-stage approach to avoid maximization bias (Patterson, Neumann, et

al., 2023). First, each agent is run for 30 seeds sweeping over many learning

rate parameter settings, and then the hyperparameter that achieved the best

average performance is run for 100 new seeds. The list of hyperparameters is

presented in Table 6.1.

DQN agents
Learning rate [4−8, 4−7, 4−6, 4−5, 4−4, 4−3, 4−2]

Adam optimizer β1 0.9
Adam optimizer β2 0.999

Batch size 64
Buffer size 10000
Network size 2× 64 dense network with ReLU activation
Target refresh 128
Exploration ϵ 0.1
Training time 100000

Table 6.1: Hyperparameters of classic control experiments

We includeModified PER, which combines Naive PER with without-replacement

sampling and recomputes the priorities every 10 steps. Figure 6.1 summarizes

the results. Unsurprisingly, prioritization does not improve the sample effi-

ciency over uniform replay in any of the four domains.
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Figure 6.1: Performance of DQN replay agents on classic control problems.
No clear benefit for prioritization. Results averaged over 100 seeds; shaded
regions are 95% bootstrap CI.

Looking closely at the learning curve for Cliffworld in Figure 6.1, we see a

small blip in the performance with uniform replay. Recall that we suspected

that EPER, might perform well in this MDP due to outlier rewards when

the agent falls off the cliff. Average learning curves can hide the structure

of individual runs, so we plotted all the runs individually for each method in

Figure 6.2. Here we see DQN with uniform replay periodically performs quite

poorly, even late in learning. This is true to a lesser extent for DM-PER, Naive

PER, and Modified PER. Interestingly, Naive PER variants based on EPER

appear substantially more stable with fewer collapses in performance.
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Figure 6.2: Performance of 100 individual runs in the Cliffworld shows per-
formance dips using uniform replay, Naive PER, and DM-PER. EPER-based
methods appear to have more stable performance.

46



6.3 Summary

In this chapter, we investigated PER in slightly more complex control prob-

lems. We focused on three classic environments, MountainCar, Acrobot, and

Cartpole, covering a range of control problems and the Cliffworld domain

where outliers in reward may prove problematic for PER. We found that un-

der fair hyperparameter selection, there was no sample efficiency gain for PER

over uniform replay. Finally, a closer look at individual runs in the Cliff-

wold domain revealed drops in performance even late in training, possibly

due to outliers in the rewards. Compared with other replay methods, indi-

vidual EPER runs showed robust performance and fewer performance drops,

supporting our hypothesis that EPER can be successful in noisy TD error

settings.
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Chapter 7

Conclusion

In this thesis, we conducted a series of carefully designed experiments with

prioritized replay under tabular and neural network settings. We found that

prioritization combined with non-linear generalization can overestimate val-

ues during early learning. It appears that a combination of bootstrapping

and neural network generalization is the reason behind this overestimation.

Furthermore, we showed in a simple chain domain, several variants of PER

outperform i.i.d replay in the prediction setting but have poor sample efficiency

in control. Unsurprisingly, no variant of PER improves upon i.i.d replay in

classic control domains.

We introduced EPER as a simple modification prioritizing transitions ac-

cording to a learned estimate of the expected error inspired by gradient TD

methods. We showed that EPER can be more robust in noisy reward domains

and perform more reliably than PER or i.i.d replay in Cliffworld. Finally, we

explored two design decisions in PER, recomputing outdated priorities and

sampling batches without replacement, discovering that these additions can

improve PER in the tabular setting but have little to no effect when using

neural networks.
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7.1 Future Work

This section identifies and discusses several promising directions for future

work in experience replay. A core insight from this thesis is the impact of

generalization on value propagation. Unlike the tabular setting, where boot-

strapping drives value propagation across states, neural networks generalize

aggressively, updating the values across most states. A follow-up study may

investigate ways to restrict or direct neural nets to generalize more favorably

with PER.

One promising direction is investigating other prioritization schemes. In-

stead of prioritizing transitions by TD error, one could randomly sample tran-

sitions but reweight them according to TD error. This scheme may improve

data diversity, whereas PER may saturate mini-batches with only a small

subset of high TD error transitions.

Beyond prioritization, there are many unexplored ways to replay transi-

tions. One could maintain a small buffer of prototypes or representative tran-

sitions to create mini-batches alongside the online experience. In addition to

a smaller memory footprint, we speculate that a small buffer of prototypes

could improve neural network learning by reducing the amount of redundant

data used to train the network while having diversified mini-batches to avoid

over-generalization.

Replay in biological systems is usually a fast sequential reactivation of

memories (Wittkuhn et al., 2021). One possible next step is finding sequences

that lend themselves to neural network generalization. Sequential replay may

be augmented with jumps in the sequence to avoid over-sampling specific tran-

sitions.

This thesis introduced the EPER algorithm that prioritizes transitions ac-

cording to expected TD error. Many of the design decisions in EPER remain
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open questions. Conditioning the expectation on only the state in control

problems and regularizing the secondary estimator similar to the EQRC algo-

rithm are stimulating directions for future exploration. Another exciting next

step is an investigation of EPER with gradient TD methods because they

provide the expected TD error estimator without any additional computation.

Model-based RL agents use search control to select states for planning.

Insights gained from the interaction of experience replay and neural network

generalization can guide the development of search control methods to support

the training of neural networks with simulated transitions from a model.
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